

# Cross-modal matching of numerosity is subserved by the left parietal cortex in the developing brain

## S. Basso Moro<sup>1,\*</sup>, S. Brigadoi<sup>2,\*</sup>, S. Benavides-Varela<sup>2</sup>, S. Cutini<sup>2</sup>, P. Sessa<sup>2</sup>, F. Simion<sup>2</sup>, R. Dell'Acqua<sup>2</sup>

<sup>1</sup> Department of Neuroscience, University of Padova, Padova, Italy; <sup>2</sup> Department of Developmental Psychology, University of Padova, Padova, Italy \*These authors contributed equally to the work

E-mail: sara.bassomoro@unipd.it, sabrina.brigadoi@unipd.it

### INTRODUCTION

The involvement of the fronto-parietal circuit in tasks requiring allocation of covert attention is well known in the adult brain [1]. Less is known about the fronto-parietal interplay in the developing brain during the allocation of attention to visual objects. The aim of the present study was to investigate the involvement of the entire fronto-parietal network in 6-month old infants during a task of lateralized visual attention.

#### MATERIALS AND METHODS

Five infants were discarded due either to technical issues or because they attended to less than 50% of trials in at least one condition (19 participants, equipped with 4 detectors and 16 sources (16 channels) (Fig.2). 10 females). Data processing: NIRS data were analyzed with the Homer2 package [2]. congruent or incongruent in numerosity (Fig.1).

Participants: Twenty-four 5-to-6-month old infants (mean age=5.7, SD=.44). Data acquisition: The bilateral fronto-parietal brain responses to the stimuli were monitored with an ISS Imagent<sup>TM</sup> system Paradigm: Auditory (i.e., either 1 or 3 beep sounds) and visual (i.e., either 1 or 3 lateralized visual targets) stimuli that could be

Channels with very low intensity were pruned, motion artifacts were identified and corrected applying a combination of spline and wavelet techniques, physiological noise was reduced by applying PCA (85%) and a band-pass filter (0.01-1 Hz) was applied. Before block-averaging, trials with a looking time < 1 s were removed.

<u>Metric:</u> The integral of the mean hemodynamic response between 4 and 11 s was computed for both oxy- (HbO) and deoxy-hemoglobin (HbR).

Statistical analysis: Mixed ANOVAs separately for the frontal and parietal regions, with gender as between-subject factor and number of visual targets (1 vs. 3), congruency (congruent vs. incongruent), hemisphere (left vs. right) and channel (from 1 to 4) as within-subject factors.



**Fig. 1:** A central attractor was presented before and maintained throughout each trial to favor the allocation of the infant's eyes at the center of the screen. To match auditory (i.e., either 1 or 3 beep sounds) and visual (i.e., either 1 or 3 lateralized target visual stimuli) information, infants were required to orient their attention to the lateralized visual targets. During the experiment infants were videotaped.

#### **RESULTS AND DISCUSSION**

- No differences between male and female.
- Main effect of hemisphere (F(1,17)=4.98, p=.039) for HbO in the frontal region.

- The most lateral-anterior frontal channel showed the main difference between the two hemispheres (t=-3.353, p=.004).
- Interaction congruency hemisphere (F(1,17)=10.02, p=.006) in the parietal region (increase in the left hemisphere and decrease in the right hemisphere for incongruent stimuli and opposite pattern for congruent stimuli).
- The most left-anterior parietal channel showed the main difference between activation for congruent and incongruent stimuli (t=-2.282, *p*=.035) (Fig.3).
- The most left-anterior parietal channel showed a significant difference with the activation of the symmetric channel in the congruent condition (t=-2.231, p=.039).
- For HbR no statistically significant differences but a tendency in the parietal region for the interaction congruency\*hemisphere (F(1,17)=3.34, p=.085).



Fig. 3: Group average hemodynamic responses in the most left anterior parietal channel (left) and in the most right **Fig. 2:** The optodes in the parietal region were placed around P3 and P4 locations of the 10/10 anterior parietal channel (right) for incongruent (red HbO, magenta HbR) and congruent condition (blue HbO, cyan HbR). System, whereas in the frontal region optodes were placed around FC3 and FC4.

#### Conclusion

Our results suggest that 5-6 months old infants are able to match the numerosity of auditory and visual stimuli. These results confirm and extend previous evidence that such ability is present in young infants [3;4]. In addition, our data showed that both frontal and parietal regions are involved in the task, with the left parietal area likely more involved during the matching phase of the task.

| REFERENCES                                                                                                                                                                                                           | ACKNOWLEDGES                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <ul> <li>[1] Corbetta et al., 2008. Neuron 58, 306-24. [2] Huppert et al., 2009. Appl Opt 48, D280-98.</li> <li>[3] Izard et al., 2008. Plos Biol 6, 0275-85; [4] Izard et al., 2009. PNAS 106, 10382–85.</li> </ul> | This work was supported by Grant STPD 11B8HM from the University of Padova. |